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ON NADAI'S ANALOGY FOR

ELASTIC -PLASTIC TORSION

by

Philip G. Hodge, Jr.

ABSTRACT

Nadai's soap-film sand-hill analogy for torsion of an elastic-plastic

cylinder has been used for both experimenital and numerical deter-

,mination of stresses despite the lack of a clear understanding of its

limitations. A proof is given here that the analogy is always valid

for a solid bar. It is shown by a counter example that the analogy

is not generally valid for a hollow bar.



INTRODUCTION

Beginning with St. Venant's paper in 1856 [1]3 torsion of

prismatic and cylindrical bars has been the subject of" intensive inves-

tigation. In 1903, Prandtl [ 2] showed that the problem was mathemat-

ically equivalent to the deflection of a membrane, an analogy which is

useful not only for experimental determination of the stress distribution

but also as a visual model to aid intuition. Nadai [ 3] showed that for a

perfectly plastic material a corresponding analogy based on the shape of

a sand-hill could be used for solid cylinders. The sand-hill analogy was

extended to hollow ciylinders by Sadowsky [4] in 1941. Nadai [ 3] also

showed that the torsion of a solid cylinder of- an elastic/perfectly-plastic

bar could be represented by a combined analogy in which the membrane

was inflated under a restraining roof. In 1944 Shaw [ 5] extended the

Nadai analogy to hollow cylinders and used it as a basis for a numerical

solution.

As was first pointed out by Prager and Hodge [ 6] in 1951, the

Nadai analogy and the elastic/plastic torsion problem are identical only

if certain restrictions are imposed on the shape of the boundary. The

purpose of the present paper is to show that these restrictions are auto-

matically satisfied for solid cylinders with simply-connected cross sec-

tions, but are generally not met for all stages of loading of hollow

cylinders with multiply-connected cross sections.

3. Numbers in square brackets refer to the list of references at the end
of the paper.
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SOLID CYLINDER

We consider a solid cylinder whose cross section is a simply connec-

ted region A bounded by a curve C. Under the assumptions of St. Venant [ I]

equilibrium is automatically satisfied if the only non-zero stresses are given

in terms of a stress function 4 by

o" -. )l&y y- = - pI .x (1)
xz yz

In a region which has always been elastic, the stress function must satisfy

V -2Go (2)

where 0 is the angle of twist per unit length and G the shear modulus; in a

plastic region, the yield condition

Iv4)= k (3)

must be satisfied. Finally, 4 must satisfy the boundary condition

= 0 on C (4)

The preceding formulation does not provide for a region which has

a history of plastic behavior followed by elastic behavior. Even though the

torque is assumed to be monotonically applied, it is conceivable that such a

reg.on could exist. Therefore, it is necessary to make a more precise state-

ment of the elastic-plastic boundary value problem as follows;

Torsion problem. GivenB=O(t) such that 6(,0) = 0, b2:0, and 0 is

continuous in time, find the stress function 4 = 4 (x, y, t) such that

is continuously differentiable in A (5a)

= 0 oh G (5b)

IV I--k in A (5c)

IfIV 01 <k then V2 4 -ZGB (5d)

If I VoI = k and Vo- V < 0, then V' 4 = -2Gb (5e),
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The statement of (5d) and (5e) in terms of rates'accounts for the fact that at

some previous time in its history b may not have been subject to equation (2).

For the Nadai analogy, we denote the deflection of the membrane by

and choose units so th at the over-pressure and tension are related by p/T

2GB. The "roof function" is first defined by

is continuous and piecewise continuously

differentiable in A (6a)

= 0 onC (6b)

IV OI- k> ". in A ( 6 c)

The roof function can be easily determined for any section as described, for

example, ih..t(6] . With known, the analogy problem is formulated as follows:

Analogy problem. Given O(t) such that 0 (0) = 0, 9 - 0, and 0 is

continuous in time, find 0 = 4 (x, y, t) such that

is continuously differentiable in A (7a)

= 0 on C (7b)

" in A (7c)

If P < then VZO = -ZGO (7d)

IfO = candq < 0, then V-, = -?GO (7e)

For the Nadai analogy to be valid for a given problem, a solution

= 4 where 0 satisfies equations (7) must satisfy all of equations (5). Since

the last three requirements on 4 and 0 appear to be different, the correctness

of the analogy is not obvious. However, for a simply-connected cross section

we can show that satisfaction:of (7) guarantees satisfaction of (5).

To this end, we first prove in the Appendix that 0 z 0 throughout A.

In view of (7c) this implies that once P= at any point, 4 = 0 from then on.

Therefore requirement ( 7 e) is superfluous and requirement (7d) could equally

well be expressed in rate form as

If 0 < 4 then 74' =-2GO (7d')
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Comparison of (7) and (5) then reveals that the only differences between them will

be resolved if we can show that IV 01<k whenever 0 < ' That this is indeed

the case is proved in the Appendix by sho*ing that IV 0 1 cannot have a relative

maximum in any region where V O= -2GO. Therefore, 0 =P is a solution of the

problem of elastic-plastic torsion and it follows from the general uniqueness theor-

ems for an elastic/perfectly plastic material that it is the unique solution.

With the validity of the Nadai analogy established, it is easy to see that

if C" is the plastic portion of the boundary C, then the entire plastic region must

lie withing the region bounded by C'" and its normals. Indeed if O='P at a point

P which is a distance d from C along the normal N to C, then ' kd at P. Thus

the average slope from P to the boundary along N is equal to k and since the mag-

nitude of the gradient equals of exceeds the slope along a prescribed line, the

average value of IV '5ls equal or greater than k. Equations (7c) and (6c) then

lead to the conclusion that 'P =' at each point on N.



!5

HOLLOW CYLINDER

We consider a cylinder whose cross-section is the region A between

an outer boundary C and an inner boundary C i ;, the area enclosed by C. is4 3.

denoted by A.. The stress function must have a constanit value bi on C. and

the value of @i is determined by the requirement that the displacements be

single valued around the hole.

If the section is fully elastic, the equation for finding bi is

C. (a /an) ds= - GA. (8a)
I1

If the section is partially plastic but there exists a curve C. surrounding the1

hole which is and has always been elastic, then equation (8a) must be replaced

by

C ,(a0/8n)ds = -2GOA.' (8b)
111

where A.' is the total area bounded by C.'. On the other hand, if there exists1 1

an elastic curve surrounding the hole but part of any such curve has been pre-

viously in a plastic state, the condition must be written in terms of rates:

0 (8/an)ds = -2GbA (8c)

Finally, if a single plastic region extends from the hole to the outer boundary,

then 0 i is obviously given by

0i = kd (8d)

where d is the shortest distance from the hole to the outer boundary along a

normal to the outer boundary.

In the membrane analogy, that portion of the membrane which is o'ver

the hole is replaced by a rigid, weightless, horizontal disk, free to rise or fall.

Equilibrium of the disk shows that 0 must satisfy equation (8a).

4. For simplicity of exposition we consider only a single hole; the extension
to more holes is obvious.
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For the sand-hill analogy we can write

i = kd (9)

analogus to (.8d) and so construct a roof function. However, as Shaw [5] has

shown by an example, the roof function defined by (9) may not be appropriate

since IVOI= k may occur at the edge of the hole for ( <T. Rather, it is nec-

essary to postulate a double roof attached to the weightless disk and rising or

falling with it. The double roof is required by the fact that 8o/an at the hole

boundary may be positive or negative.

With the addition of the movable double roof, the analogy has reached

a complexity where it is of questionable value for direct experimentation, but

it is still helpful for forming an intuitive picture. However, it must be used

with caution since it does not necessarily solve the torsion problem. To see

this in an example, we consider the hollow filleted rectangle discussed in [ 5]

The insert in Figure 1 shows the cross section, and the detail shows part of

the stress function for various values of 0. The bottom section.is. the flat mem-

brane under zero torque. Next is shown the membrane at the maximum torque

for which the cylinder is fully elastic and above this is a partially plastic stage.

Data for these figures is taken from[5] .

The top section shows the fully plastic roof. For the limiting case of

fully plastic behavior € = rises to a value above Oi near the corner and. hence

for almost fully plastic behavior the membrane is restrained by the upper roof.

On the other hand, the section below shows that at this particular partially plastic

state the membrane is restrained by the lower roof. Evidently there must be

some stage intermediate to these two in which the membrane is not in contact with

either roof. In this case, the analogy is not applicable, since requirement (7d) on

4) does not correspond to requirement (5d) on 0 unless equation (2) has held for all

previous times.

In view of the possible non-applicability of the Nadai analogy to multiply-

connected cross sections, care must be taken in numerical or analytical solutions

that one is truly solving the torsion problem rather thanthe analogy. As 6 in-

creases, the two solutions will agree so long as ' = 0 wherever ' = ' and IVc < k

where ' <FP When the analogy predicts that ' decreases numerically from , the

torsion problem must be treated as a new analogy problem superposed on the orig-

inal one at the instant the "unloading" begins. Since unloading may take place

continuously in part of the section while loading continues in other parts, the

resulting problem will be complicated by this phenomenon.
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The existence of unloading under an increasing angle of twist has impli-

cations with regard to plasticity theory. In the first place, it is obvious that

any "deformation law" will be quite inappropriate here. Further, the smooth

transition from elastic to plastic behavior Wvhich was used in [7] for a solid

section will lose much of its appeal since the transition between plastic flow

and unloading is not smooth.
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APPENDIX

Proof that ; - 0. We note first that c is zero everywhere on C so that

if it is anywhere negative it must have a relative minimum in the interior of A.

At such a postulated minimum necessary conditions

a/ax = 0 a/ay = 0 (10)

a O/ax >- 0 a ;/ ay 0 (11)

Since is continuously differentiable, equations (10) are obvious. Although the

second derivatives may not exist along a curve which separates a roof region

= from a free region 0 < $, equations (11) are still necessary if the derivatives

in question are interpreted as one-sided derivatives extending into eithker the roof

or free region.

Evidently (11) are incompatible with V, tQ- 0: and we shall show that this

latter condition holds throughout. Let to be a time up to which 0 = Tat a point

implies P 0 (note that t = 0 is such a time so that some to exists) and let tI be

any later time. Let 8(x,y) denote the smallest angle of twist for which 0 (x,y)

= (x, y). Finally, 1.&t the change in,'.4 from to to t be denoted by'V),= 0.

Four possibilities exist depending upon whether =or not at to and t, but

in each case V 2(AO) t- 0. Thus:

if 0o < Pand 41 <' then V .AO) = -2G ( ) <0 (12a)

20

if 4o < and 0 1 =P, then V (A4) -2G(O -0 ) <0 (lZb)

if 0 = a n d 1 < ', then V(A4) -2G(8 1 - 0 ) <0 (lZc)

if 0 =0 and 0l =4' then V(AO) =-2G(8 -B8) 0 (1Zd)

Therefore, starting from t any AO 2:0 and hence ; (to) -0. However, since (P0

can never exceed 4, this conclusion renders case (1Zc) above impossible and leads
to the conclusion = 0 if 4 ='. This in turn removes the restriction on t so that

0
the desired conclusion 4'~0 holds throughout A at all times.
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Proof that IV0I -k. Let A' denote that part of A where < and hence

V2  : -2GO. It is well known (see for instance [8] ) that IV '1 achieves its maxi-

mum only on the boundary B of A'. But B can consist only of parts C' of the orig-

inal boundary C and the boundary B' between A' and the rest of A. On B', IV 1= k

and on C' it follows from the definition of ' that IV ' < k. Therefore, the maximum

value of IV'J on B is not greater than k and hence IV'7I < k in the interior of A'.
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